Dr. René Grosspietsch, Head of Driver Assistance Systems.
BMW Group Research and Technology.

HIGHLY AUTOMATED DRIVING.

BARCLAYS INVESTOR CONFERENCE, LONDON.
SEPTEMBER 4TH, 2015.
HIGHLY AUTOMATED DRIVING WILL IMPROVE DRIVING COMFORT AND STILL ADMIT DRIVING PLEASURE.

• Is HAD consistent with BMW’s aspiration to provide customers with sheer driving pleasure?

• Yes! Progressing urbanization and increasing car densities in cities lead to traffic congestion on an unprecedented scale. Car drivers will presumably be happy to hand the driving task over to the car and utilize the gained time differently (personal productivity/relaxation).

• HAD-enabled cars still admit „driving pleasure“ where possible (e.g., outside congested city centres), while freeing the driver from inconvenient tasks.

Source: Sueddeutsche.de
FROM RESEARCH TO REALITY: THE BMW GROUP HAS LONG-TIME EXPERIENCE IN VEHICLE AUTOMATION.

BMW Track Trainer (2006)
Emergency stop assistant (2009)
Highly automated driving on the motorway (2011)
HAD on the vehicle‘s limit (2014)
360° collision avoidance (2015)
Fully automated remote valet parking (2015)
NEW 7 SERIES ALREADY PROVIDES FUNCTIONS VERY CLOSE TO HIGHLY AUTOMATED DRIVING.

Active Side Collision Protection and Cross Traffic Alert.

Pedestrian Protection & Night Vision.

Traffic Jam Assistant up to 60km/h

Remote Controlled Parking

Highly automated driving, Dr. René Grosspietsch, 04.09.2015.
HOWEVER TRUE AUTOMATED DRIVING STILL MEANS A BIG STEP BECAUSE OF RESPONSIBILITY SWITCH.

![Diagram showing the switch of responsibility from Man to Machine, with different levels of automation: Driver Only, Assisted, Partly automated, Highly automated, Autonomous, Driverless.](source:SAE, VDA, LT-Analyse)
MANY TECHNOLOGIES TO BE MASTERED ON THE WAY TO HIGHLY AUTOMATED DRIVING.

Validation / Testing

System itself

SENSORS

ENVIRONMENT MODEL

BACKEND: DIGITAL SERVICES AND MAP

OBJECTS AND FREE SPACE

SELF-LOCALIZATION

E/E ARCHITECTURE & CONTROL UNITS

MOTION CONTROL

HAF DRIVING FUNCTION

TRAJECTORY PLANNING

DRIVING STRATEGY

Highly automated driving, Dr. René Grosspietsch, 04.09.2015.
MANY TECHNOLOGIES TO BE MASTERED ON THE WAY TO HIGHLY AUTOMATED DRIVING.
BACKEND: HD MAP WITH DYNAMIC INFORMATION WILL PROVIDE LIVE ROAD PREVIEW AS ESSENTIAL DIGITAL SERVICES.

| EN-ROUTE APPROVAL | VARIABLE TRAFFIC SIGNS | TRAFFIC CONDITIONS | ROAD WORKS | HIGH-PRECISION DIGITAL MAPS | WEATHER CONDITIONS |

Cooperative ITS, 3rd Party Info > 200 m

Far Range Sensors ~ 200 m

Short/Mid-Range Sensors ~ 70 m

Highly automated driving, Dr. René Grosspietsch, 04.09.2015.
Example:
Velodyne 64-beam laser – rotates 360-degrees and takes up to 1.3 million readings per second, making it a truly versatile sensor on the car. Mounting it on top of the car ensures its view isn’t obstructed.

SENSORS: PRICE LEVEL AND PACKAGE OF CURRENT HIGH PERFORMANCE LIDAR SENSORS IS A CHALLENGE.
BUT COST EFFICIENT ALTERNATIVES ALREADY ON THE HORIZON AND EXPECTED TO BECOME MASS MARKET COMPATIBLE AS IN THE PAST.

*actual cost depression based on purchased parts prices

Source: Quanergy, Valeo, Team Research, "Low-cost compact MEMS scanning LADAR system for robotic applications", Moss et al., 2012
ONBOARD SENSOR FUSION GENERATES A REAL-TIME ENVIRONMENTAL MODEL OF VEHICLE SURROUNDINGS.
PERCEPTION: FOR BOTH SENSING OF THE ENVIRONMENT AND CONTEXTUAL UNDERSTANDING MACHINE LEARNING SEEN AS AN ESSENTIAL BUILDING BLOCK.

- Green light will last for the next 10 sek
- Is indicating lane change and will likely do that in 2 sek
- Looks at me – will likely not cross

Highly automated driving, Dr. René Grosspietsch, 04.09.2015.
REMAINING CHALLENGES COMPRISCE INDUSTRIALISATION AS WELL AS TECHNOLOGICAL, SOCIAL AND LEGAL ASPECTS.

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Industrialization** | • Field operational tests with a heterogeneous fleet to gather all kinds of situational data for a later **functional validation**.
• Standardization of methods for validation of usage/functional safety.
• Systematic quantification of benefits of HAD through standardized methods. |
| **Technological advancements** | • Data security, particularly with respect to backend connectivity.
• Development of highly accurate, digital maps in the backend.
• Improved **environmental model** and cost-down of sensors. |
| **Societal aspects** | • Proactive communication of opportunities provided by HAD to facilitate societal acceptance
• Assurance of data privacy and security to retain current customer trust levels |
| **Legal aspects** | • Concerted approach to solving **legal issues** with respect to accreditation (HAD systems may not satisfy country-specific accreditation laws), regulatory law, as well as **product liability**. |
THANK YOU FOR YOUR ATTENTION!

BMW GROUP
Research and Technology